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Theoretical Investigation of a Free-Ele{ctron Maser

O~perating with a TEM Transmission Line
Iosef M. Yakover, Yosef Pinhasi, and Avraham Gover, Senior Member, IEEE

Abstract—The possibility of using the transverse electric mag-
netic (TEM) transmission line in free-electron masers (FEM) is

discussed. It is shown that at the centimeter and long-millimeter

wavelengths suclh transmission lines allow one to combine the

advantages of aml open cavity and a waveguide-based resonator.
A particular case of an FEM-based on the use of a shielded
two-wire transmission line is investigated theoretically. A math-
ematical approach that allows one to calculate transmission-line

parameters impalrtant to the FEM application is developed. It is
based on the use of the integral equation technique and on a new
representation of the Green function of the internal region of a
circle, which wa~s obtained in thk paper. Numerical analysis of
effective mode area, wave impedance, and attenuation constant
was made for tlhe odd TEM mode, whkh is excited in FEM
operation. The FEM under research at Tel Aviv University was

considered as an example, The frequency dependence of gain
for an FEM operating in the linear regime was calculated. That

the obtained gain value is much higher than the ohmic losses
in the transmission line shows the possibility of using the TEM

transmission line in this FEM.

I. INTRODUCTION

F REE-ELECTRON lasers (FEL) and masers (FEM) [1]-[3]

are powerful sources of electromagnetic radiation. Their

principle of operation allows the construction of devices that

can radiate an electromagnetic power in a wide spectrum

from microwaves to the ultraviolet regime. Flexible tunability

and high coherence of radiation make FEL’s and FEM’s

attractive sources for scientific, medical, and future industrial

applications.

As in conventional quantum lasers FEL’s and FEM’s use a

resonator to generate electromagnetic radiation. The resonator

is placed insid[e of a magnet stack, a so-called wiggler,

that provides a strong periodic magnetic field. Fig. 1 shows

schematically ~1] two possible configurations: (a) an open

Fabry-Perot cavity and (b) a waveguide resonator. Electrons

passing through the wiggler oscillate and radiate an electro-

magnetic wave in a resonator mode that has a strong electric

field component in the wiggling direction. The operating

frequency is determined by the synchronism condition [5] and

depends on the e-beam kinetic energy, period, and strength of

the wiggler magnetic field and on the resonator parameters.

FEL’s designed for the infrared, visible, and ultraviolet

spectrum regions use the Fabry-Perot resonator operating
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Fig. 1. Schematic drawing of the FEL resonator. (a) Open cavity configura-
tion. (b) Waveguide cavity configuration.

normally in the fundamental free-space Gaussian mode. In this

resonator configuration, the synchronism condition is always

fulfilled, but the waist size of the Gaussian mode (for a fixed

resonator Fresnel number) increases as the square root of the

operating wavelength. At millimeter wavelengths and into far

infrared regime, the waist size of the Gaussian mode becomes

in many design cases larger than the desirable wiggler gap,

and an open cavity is no longer suitable for use in an FEM.

This difficulty can be avoided by using a waveguide res-

onator. It allows one to reduce the transverse dimensions of

an operating mode bellow the wiggler gap size, while attaining

higher gain because of the improved filling factor. But in this

case, another difficulty appears: The synchronism condition

can be satisfied only for e-beam energies exceeding some

value depending on waveguide sizes and transverse mode

number. At millimeter waves and in the infrmed regime,

this problem does not occur as long as the wiggler gap is

many wavelengths wide and the waveguide is overrnoded. But

at centimeter waves, the situation is more difficult because

at such wavelengths the synchronism condition is satisfied

(for conventional wigglers and moderate energy) only for

waveguides having cross-sectic,nal dimensions exceeding the

wiggler gap.

This design difficulty prompted us to propose a shielded

TEM wave transmission line as a basis for an FEM res-

onator, operating at centimeter and millimeter waves. Such
a transmission line resonator combines the advantages of

both an open cavity and a waveguide based resonator, i.e.,

the synchronism condition is satisfied for any ‘e-beam energy

because the TEM mode has no cutoff, and a shield limits
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the transverse dimension of the operating mode as desirable

to obtain high filling factor and, consequently, higher gain.

The gain is further increased because of higher magnetic field,

which can be accepted by reducing the wiggler gap. Moreover,

employment of the TEM transmission line as an RF cavity

of the FEM enables tuning of the operating frequency of

the device over a wide range (for example, by changing the

acceleration voltage). We note that first results of an TEM-

FEM experiment based on a similar transmission line were

reported recently [6].

The shielded two-wire transmission line, which is well

known and widely used in communication, is suitable for

the proposed FEM application. This paper deals with the

analysis of transmission line characteristics that are specific

for the FEM application. On the basis of this analysis, the

expected FEM parameters are estimated, The unique features

of the proposed cavity enable designing compact and powerful

FEM’s tunable over wide frequency ranges at the cm and mm

wavelengths.

II. FEM CONSIDERATION

Let us consider an FEM based on a shielded two-wire

transmission line placed inside a gap of a planar wiggler,

as shown in Fig. 2. The transmission line is formed of two

identical wires of circular cross section, which are surrounded

by a cylindrical metal shield. The axes of the wires are located

in the diameter plane of the shield symmetrically with regard

to its axis.

Let us assume that the e-beam axis coincides with the axis of

the shield. The magnetic field of a wiggler forces the electrons

to oscillate in the x-direction, In FEM operation, the odd TEM

mode will be excited effectively. If the amplitude of electron

oscillations is small, it can be supposed that the electric field

of the operating mode does not change in the region occupied

by electrons.

Taking into account all mentioned assumptions, the main

FEM parameter, i.e., gain, can be calculated using the follow-

ing well-known, single-mode gain-dispersion equation [7], [8]

for the FEL operating in the linear regimel

G(s) =
(s – M)’ + !3;.

S[(s – M)2 + O;r] – Z(J
(1)

where

is the gain parameter

(3)

is the reduced space-charge parameter, F is a plasma frequency

reduction factor, and

( )(3= ~–ko–kw L.
z

] Time dependence is presented as exp (id)

(4)

[ Wk@r magnets

wiggler magnets

(a)

t

x

(b)

Fig. 2. Cross section of a shielded two-wire tmnsmission line placed between
the wiggler plates.

is the detuning parameter, i = ~, r. is the radius of e-beam,

10 is the e-beam current, LW is the wiggler length, w is the

angular frequency of the FEM radiation, kW = 27r/AW, k. =

21r/A, @ = V“77Z,P0,E0,C are, respectively, the wave

number, the wave impedance, permeability, permittivity, speed

of light in free space, e is the electron charge, m is the electron

rest mass, Jo, J1 are Bessel functions, and

eBw ‘Y

a“ ‘kwmc’ 7%=J-’
p=~~

/3../~”, ?=l+~, Vzo= Cf?z

.=*(;)2[,-+)2]-3’2.

BW is the wiggler magnetic induction, E~ is the kinetic energy

of electrons, and AcmZ is the effective mode area of the

operating mode. The effective mode area is determined by

/
lEZ(~, y)12dZdy

A emz =
IEZ(0,0)12

(5)

where the integration is carried out over the transmission line

cross section, and EZ (O, 0) is calculated on the transmission

line axis where the e-beam passes.
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ah

Fig. 3. Normalized effective mode area versus a/b.

The extraction efficiency q. of the FEM can be estimated

by the following formula [4]

(6)

Using (6) one can estimate the extraction efficiency of the

FEM and FEL directly from the bandwidth of the small-signal

gain curve calculated in the linear regime. We should note

that when the FEM is operating in the low-gain-Compton

regime, the extraction efficiency giving in (6), can be found

from the simplified expression q. ~ l/2NW, where ALWis the

number of periods in the untapered wiggler [4]. Typically,

the extraction efficiency is of the order of few percents

if an untapered wiggler is used (see, for example, Table

III). Shortening the wiggler, and thus improving efficiency,

depends on the possibility of attaining gain values much

larger than ohmic losses. Further efficiency enhancement can

be achieved employing tapered wiggler [9] and depressed

collector [10], [11 ] schemes (operation of FEL with total

efficiency exceeding 30% was reported in [9]).

III. TRANSMISSION LINE ANALYSIS

As can be seen, in order to calculate the FEM gain, one

needs to know the electric field distribution in the transmission

line cross section. For the TEM mode, this problem reduces

[12] to the solution of the two-dimensional Laplace equation

A~=O (7)

which, for the ease of the odd TEM mode, should be supple-

mented with the boundary conditions

94s1= —Y492= Y (+3 = o. (8)

These bound~y conditions correspond to the oppositely

charged (up to jpotentials +V) wires placed within a grounded

shield.

This transmission line was analyzed in a number of works

[13]–[15]. Standard transmission line parameters, such as

wave impedance, capacitance per unit length, and attenuation

constant,’ were computed in these papers. But the effective

mode area for tlhis transmission line was not calculated before.

We will solve (7) using the integral equation technique.

Applying Green’s theorem and taking into account boundary

conditions (8), we get the following integral equation

I
ds’K(r, r’)a(r’) = v, rcsl

,sj

where

K(r, r’) = G(r, ~; r’, +’~~– G(T, q!I;r’, m – ~’)

and

G(T, ~; r, I/J’)

‘~ln

[

R2 + r2r’2/R2 – 2rr’ cos (~ – ~’)
—

rz + r’z – 2rr’ cos (7J – ~’) 1

(9)

(lo)

(11)

is the Green function of the Dirichlet problem for the internal

region of the circle [16] of radius R, a is the surface charge

density on the wire.

We solve the integral equation (9) using the Galerkin method

expanding u in a Fourier series

u(r) = ~ Ap COS(PX) , TES1 (12)

P

where x is the polar angle in the local polar coordinate system

(P, x), whose axis coincides with the axis of the wire [see Fig.

2(b)], Ap are unknown coefficients, and the summation over

~isforfl=O,l,., iW.

As a result of this procedure, we get a system of linear

algebraic equations (SLAE’s)

?AP’TPIP’ = ‘~’.o (13)

M’

having matrix elements
27r

//

27r
T P>@’= a dx dxr COS(flx)~(~, #) COS(,U’X’)

o 0

T,# ● L%. (14)

Here, 6P,0 is the Kronecker delta.

The main difficulty in calculating TP,P, is that the centers of

the polar coordinate systems (p, x) and (r,@) do not coincide.

To avoid this difficulty, a new representation for the Green

function (11) was found, The expression (11) can be rewritten

as a power series, which for the case of p < b, pf < b has

the form

(15)

where

r = ~bz + p2 – 2bpcos$, p< = min (p, p’)

p> = max(p, p’).

Further transformations were made using the expressions

following from the summation theorem of Bessel functions

(16)

exp (@J) = ~ ‘p

M )

~ r(u + k) exp(ikx)
@ ‘r(v)r(k + I)

(17)
rv

k=l)
b
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TABLE I
CONVERGENCEOF THE GALERIUN METHOD IN CALCULATING THE TRANSMISSION LINE PARAMETERS

a/b

.2 .5 .8

z q
Km

z q
Xem

z q
M ohm dB/m Ohm dB/m Ohm dB/m

Z&

1 215.01 1.0964 .79634 105.06 1.1343 .38910 48,656 1.8502 .18021

2 215,01 1.0971 .79999 105.01 1.1450 .40305 48.468 1.9581 .21138

3 215.00 1.0975 .79886 104.62 1.1633 .37984 45.344 2.3259 .12885

4 215.00 1.0975 .79885 104.61 1.1634 .37860 45.311 2.3148 .12337

5 .79885 104.61 1.1634 .37828 45.235 2.3314 .11686

6 .37826 45,232 2.3310 .11587

7 .37825 45,230 2.3317 .11507

8 .37825 45.230 2.3317 .11489

9 .11478

10 .11475

where p < b and I’(z) is the gamma function. As a result, the The attenuation constant in the first order of perturbation

representation in ( 18), shown at the bottom of the page. of the theory having small parameters WI and Wz, is determined by

kernel (10) of the integral equation (9) was achieved, allowing formula [17]

for the integration of (14) analytically. Solving the SLAE, one

finds the surface charge density o on a wire, allowing the Re(w2)
calculation of transmission line parameters. Re (wl)

/
czs@]2 + 2

/
d5’l]HT\2

The effective mode area, given by (5), was found by s~q= SI
(21)

calculating the electric field using the Green theorem and 2PIJ

expressions ( 15)–( 17). The result is expressed in terms of the

SLAE solution in (19), shown at the bottom of the page, where
where WI (W2) is the surface impedance of the shield (wires),

z=% @o) II. is the tangential component of the magnetic field found for
~aAo WI = W2 = O, P. is the power through the cross section of the

is the wave impedance of the odd TEM mode. transmission line. Omitting the mathematical transformations,

- ,=g,, (:)’’r’(T’),. 55 (-a/b)m+m’ cos (mx) cos (m’x’)
~=om,=o r(m + l)r(m’ + I)r(k – m + I)r(k – d + I) 1

r, f-’ E SI

4<ob

(18)

(19)“m=za~Ao[(b/R)2-1] - fA1[l + (b/R)2] - ~AP(f)p] 2
P
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TABLE II
FEM PARAMETERS

Accelerator

Electron beam energy Ek =70 keV
I

Beam current 10=1 A

Magnetic induction BW = 300-500 Gs
r

Period & = 4.4 cm
I

Number of periods NW= 17

we present here only the resulting expression

1

[

2Re(wl)a

q = Ao<o R ()
E r’(~+ 1) ; ‘k

k=l,3,5,...

“E:? Apq:)p+”
fl=cl #r=l)

(1+ ~flo)(l + ~p’o)

x ~W + l)r(fl’ + I)r(k – ~ + l)r(k – ,d + I)
m

+ Re (w’) Z(1 + tipo)Afi1 (22)
p=o

where

Re (WI) = @,LLo/201, Re (wZ) = ~m, aI (0’)

is the conductivity of the shield (wires).

IV. NUMERICAL RESULTS

The computed results presented in Table I illustrate the

stable and fast convergence of the developed method as the

parameter ill is increased [Al is the number of cosines kept

in series (12)]. Three transmission line parameters, the wave

impedance Z, Ithe attenuation constant q, and the normalized

effective mode area Z.. = Aem/TR2, calculated for b/R =

.5, R = 10 mm, ~ = 5 GHz, are presented in this table. One

can see that the convergence of Z is faster than of Zen. The

explanation for this is that the wave impedance Z and the

attenuation constant q, unlike ~em, are variational functional

[18], which are stationary at the exact solution of (9).

Studies of dependence of effective mode area on geomet-

rical parameters of the transmission line are most important

for FEM application. The dependence of Aem versus a/b,

calculated for various b/R, is presented in Fig. 3. This figure

shows that Aem decreases monotonically for b/R ~.5 and

has a minimum for b/R> .5. In the case of small a/b, the

electric field ccmcentrates strongly in the vicinity of the wires,

while the electric field in the center of this transmission line

is weak. SO, Ae~ increases when a/b + O, In the limit

a/b ~ (R – b)/b, which can be reached only for b/R> .5,

the electric field concentrates in the space between the wires

and the shield, so ~.m again increases.

As can be seen from (l), to achieve large gain, the effective

mode area should be small. The curves of Fig. 3 show that

(b-a), mm

(a)

60

3 mm 5 mm 6 mm b=7mm

500

1 40&

?

b
30

E.-

; 2m

100-

0
0 1 2 3 4 5 6 7

(b-a),mm

(b)

o~~

(b-a), mm
7

(c)

Fig. 4. Normalized effective mode area. (a) Wave impedance, (b) attenuation
constant, and (c) versus the distance between wires.

values of ~~~ as small as desired can be reached by choosing
b/R ~ .5 and by increasing a~b, It should be realized that

the distance between the wire and the transmission line center

must be larger than the sum of the e-beam radius and the

amplitude of electron oscillations. This is required in order

for the e-beam to pass througlh the transmission line without

interception. ‘
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TABLE III

COMPARISON BETWEEN THE ESTIMATED FEM PERFORMANCES WHEN EMPLOYING TWO-WIRE TRANSMISSION LINE OR RECTANGULAR WAVEGUIDE

Dimensions

‘aveguidech”m’en
A cm

FEM operating frequency

(where maximum gain is

obtained)

FEM performances Maximum gain

Bandwidth (at 3 dB level)

Extraction efficiency

Saturation power

Geometrical parameters of the transmission line can be

found from Fig. 4(a), where the dependence of A.m versus

distance (b – a) between the wire and the center of the shield,

calculated for R = 10 mm and different b, are presented. Other

parameters necessary for FEM resonator design are the wave

impedance Z and the attenuation constant q [given in Fig.

4(b) and (c)]. The attenuation constant was calculated for a

frequency of f = 5 GHz and al = 107 l/Ohm m, cr2 = 4.

107 l/Ohm . m. One can note that Z increases monotonically,

while q has a minimum. It is important to note that q is close

to its minimum over a rather large range of (b – a).

Linear gain calculations were made for parameters of the

FEM, which was recently operated at Tel Aviv University

[19], [20] (see Table II). This set of parameters results in

an amplitude of electron oscillations of the order of 3 mm.

According to this, we have taken b – a = 4 mm and b = 5 mm.

From the curves of Fig. 4. we obtain the following values for

the transmission line parameters: A,,. x 300 nmz, Z R200

Ohm and Q w 1 dB/m. The frequency dependence of the FEM

gain expressed as a ratio is shown in Fig. 5, As we see at the

Operating frequency ~ = 5.65 GHz, the gain is much larger

than ohmic losses of the transmission line, and successful FEM

operation is possible.

To demonstrate gain enhancement when using a TEM

transmission line, we also calculated the gain curve of the

mode excited in an FEM when a 22.15 x 47.55 mmz rect-

angular waveguide is used. The effective mode area for this

case, calculated from (5), is A.m = 526.6 mm2. Here it

is necessary to expand the gap of the wiggler resulting in

reducing the magnetic induction to 300 Gs (instead of 500

Gs). Observe that the gain is much reduced because of the

lower power filling factor and poor wiggler’s strength. Table

Two wire shielded Rectangular

transmission line waveguide

a.lmm

b=5 mm 22.15x47.55 nrmz

R=lornrn

TEM TEO,

o 3.152 GHz

3m mrnz 526.6 mmz

5.65 GHz 4.87 GHz

11.7 2.2
I

=300 MHz =300 MHz
I

=3 % =3 %
I

.2kW =2kVV

A

/\ Transmission line
TEM mode

lo-

8-

3 6-

4-
Waveguide
TEolmode

2-

v
I

04 4.5 5 5.5 6 6.5
Frequency, GHz

7

Fig. 5. FEM gain-frequency response

III compares estimated FEM performances when employ-

ing the two-wire shielded transmission line or rectangular

waveguide.

V. CONCLUSION

We proposed and studied a free-electron maser operating

with a shielded TEM transmission line. Such a transmission

line at centimeter and millimeter wavelengths combines the

advantages of an open cavity with those of a waveguide-based

resonator, i.e., the lack of frequency cutoff in the transmission

line enables FEM operation at any e-beam energy, and a shield

allows reaching a strong electric field concentration in the

region occupied by electrons (high filling factor). Continuous
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tuning of an FEM over a very wide frequency range is

therefore possible.

A numerical analysis of the transmission line parameters

was made on the basis of the integral equation technique;

we obtained in this paper a new representation for the Green

function of the internal region of a circle. We found that there

is a wide range of geometrical parameters of the investigated

transmission line in which the attenuation constant is close

to its minimal value and the effective mode area is small,

leading to high gain.

Linear gain calculations show that large gain values on

the order of 10 can be achieved. These gain values are

much above the ohmic losses in the transmission line. They

allow for the design of a compact FEL oscillator with a

short wiggler and, consequently, attain higher efficiency. The

analyzed transmission line is, therefore, of great practical

importance for high gain, continuous tuning FEM applications.
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